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One of the difficulties in the quantitative approach to designing pharmaceutical formulations is the
difficulty in understanding the relationship between causal factors and individual pharmaceutical responses.
Another difficulty is desirable formulation for one property is not always desirabie for the other characteris-
tics. This s called a multi-objective simultaneous optimization problem. A response surface method
(RSM) has proven to be a useful approach for selecting pharmaceutical formuiations. However, prediction
of pharmaceutical responses based on the second-order polynomial equation commonly used in RSM, is
often limited to low levels, resulting in poor estimations of optimal formulations. The aim of this review
is to describe the basic concept of the multi-objective simultaneous optimization technique in which an
artificial neural network (ANN) is incorporated. ANNs are being increasingly used in pharmaceutical
research Lo predict the non-linear relationship between causal factors and response variables. The usefulness
and reliability of this ANN approach is demonstrated by the optimization for ketoprofen hydrogel ointment
as a typical numerical example, in comparison with the results obtained with a classical RSM approach.
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INTRODUCTION

A pharmaceutical formulation is composed of several for-
mulation factors and process variables. Scveral responses relat-
ing to the effectiveness, safety, and usefulness must be
optimized simultaneously. Consequently, expertise and experi-
ence are required to design acceptable pharmaceutical formula-
tions. One of the difficulties in the quantitative approach
for formulation design is understanding the actual relation-
ship between causal factors and individual pharmaceutical
responses. Another difficulty is a desirable formulation for one
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ABBREVIATIONS: RSM, response surface method; ANN, artificial
neural network; wp., weight matrix of ANN. «, shape parameter of
sigmoidal function: Nygaen. NUMber of hidden units; Nyp,p.. Number of
data pairs: Ny, number of input units: Ny number of output
units; B, overdetermination parameter; X, factor vector: F (X)), objective
function: G;(X ). inequality constraint; H(X), equality constraint: T (X,
r), transtormed objective function: r, perturbation parameter; ®;. step
function: d,,5 . desirability functon: D,,,. geometric mean of
desirability function: S (X)), distance function: SD,, standard deviation
of observed value for each response: FD,(X), individual optimum
value of each response: FO,(X ). estimated value of response in the same
set of causal factors; MET, O-ethylimenthol; X, amount of ethanol; X,,
amount of MET: R,. penetration rate: ¢, lag time; TIS. total irrita-
tion score.

property is not always desirable for the other characteristics.
This is called a muiti-objective optimization problem.

A computer optimization technique, based on a response
surface method (1), has proven to be a useful approach for
selecting pharmaceutical formulations (2—10). The optimization
procedure based on RSM includes statistical experimental
designs, multiple regression analysis, and mathematical optimi-
zation algorithms for seeking the best formulation under a set
of constrained equations. Composite experimental designs can
be applied to prepare systemic model formulations which are
composed of several formulation factors and process factors.
Response variables of these model formulations are predicted
quantitatively from the combination of these factors. In general,
since theoretical relationships between response variables and
causal factors are not clear, multiple regression analysis can be
applied to the prediction of response variables on the basis
of a second-order polynomial equation. Finally, optimization
algorithms are applied for deciding the best formulation.

Unfortunately, prediction of pharmaceutical responses
based on the polynomial equation is often limited to low levels,
resulting in the poor estimation of optimal formulations. In
order to overcome the shortcomings in RSM, a multi-objective
simuitaneous optimization technique incorporating an artificial
neural network (ANN) has been developed (11,12). ANN is a
learning system based on a computational technique which can
simulate the neurological processing ability of the human brain
(13). ANN has successfully been applied to solving various
problems in pharmaceutical research such as product develop-
ment (11,12,14), estimating diffusion coefficients (15), pre-
dicting the mechanism of drug action (16), and predicting
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pharmacokinetic parameters (17-20). For instance, Hussain et
al. (14) applied ANN to analyze the quantitative relationships
between several formulation factors and release parameters in
a hydrophilic matrix capsule system containing cellulose poly-
mers. It was found that ANN predictions are more accurate
than those predicted by polynomial equations.

The aim of this review is to describe the basic concept of
the multi-objective optimization technique incorporating ANN
(11,12,21). The usefulness and reliability of this ANN approach
were also demonstrated by the optimization for ketoprofen
hydrogel ointment as a typical numerical example (12).

ANN STRUCTURE

Theoretical details of a hierarchical ANN have been given
elsewhere. Briefly, the general structure of ANN has one input
layer, one or more hidden layers, and one output layer (Fig.
la). Each layer has a few units corresponding to neurons. The
units in neighboring layers are fully interconnected with links
corresponding to synapses. The strengths of connections
between two units are called “weights”. In each hidden layer
and output layer the processing unit sums its input from the
previous layer and then applies the sigmoidal function to com-
pute its output to the following layer according to the follow-
ing equations:

Yq = Ewpqxp M
f(yq) = /{1 + CXP(‘OO’q)} @3]

where wy, is the weight of the connection between unit g in
the current layer to unit p in the previous layer, and x, is the
output value from the previous layer. f(y,) is conducted to the
following layer as an output value. Alpha is a parameter relating
to the shape of the sigmoidal function. Non-linearity of the
sigmoidal function is strengthened with an increase in a. ANN
learns an approximate non-linear relationship by a procedure
called “training”, which involves varying weight values. Train-
ing is defined as a search process for the optimized set of
weight values which can minimize the squared error between
the estimation and experimental data of units in the output
layer. A back-propagation method with the steepest descent
algorithm has been widely applied for training ANN (22). Train-
ing is a very long iterative process, and ANN often gets stuck
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Fig. 1. Typical structures of hierarchical ANN. a, general ANN com-
posed of two input units, four hidden units and three output units; b,
partitioned structure of ANN composed of two input units, three hidden
units and three output units. Every response (output unit) in the parti-
tioned ANN can be estimated by the independent set of units in the
hidden layer, although the same units in the hidden layer are used
in common for the prediction of different responses in the case of
general ANN.
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in a local minima. Certain empirical techniques have been
reported to improve the convergence of ANN in the global
minima (13,23). Another essential approach is to use an
extended Kalman filter algorithm for ANN training (24-26).
We can greatly reduce the number of iterative training and
avoid to a certain extent, ANN getting stuck in a local minima
(24) by using the extended Kalman filter algorithm. Although
multiple layers can be set between the input layer and the output
layer, many ANNS consist of only one hidden layer (23). One
layer is usually sufficient to provide adequate prediction even
if continuous variables are adopted as the units in the output
layer (27-29).

In order to enable reasonable prediction of each response
variable by ANN, Carpenter ef al. (30) introduced an equation
relating to the number of units in the input layer, the hidden
layer and the output layer:

Nhidden = (Nsample /B - Noutput)/(Ninpul + Noutput +1) (3)

where Npigaen 18 the number of hidden units, Nj,,,: is the number

of input units, Ny, is the number of output units and Ny,mpie

is the number of training data pairs. The constant B is the

parameter relating to the degree of overdetermination.
Equation (3) can be rewritten as:

Nsample = B{Nhiddcn(Ninpu( + l) + Noutput(Nhidden + 1)} (4)

The unknown parameters associated with ANN are the weights
of the network. Overdetermined (B > 1), exact determined
(B = 1) and underdetermined ($ < 1) approximations have
more, an equal number, or fewer training data pairs than the
number of unknown parameters associated with the approxima-
tion. For example, B = 1.5 would give a 50% overdetermined
approximation. With an underdetermined approximation (§ <
1), each output data point is fitted perfectly by iterative training,
but the approximation may vary wildly between the output data
points; i.e., the overtraining problem. Thus, the selection of
B > 1 is usually recommended to enable reasonable prediction
of each response variable adopted as the unit in the output
layer. However, it may be possible to reduce the B value; i.e.,
8 = 1, when statistical experimental designs are employed
to prepare the model formulations, because the independency
among the factors is highly ensured by using such designs (1).

In the general structure of ANN (Fig. 1a), the same units
in the hidden layer are used for the prediction of different
response variables. This may occasionally lead to poor estima-
tion of some responses. To avoid this problem, Fujikawa et al.
(31) developed a partitioned ANN in which every response
could be estimated by an independent set of units in the hidden
layers (Fig. 1b). This is equivalent to predicting each response
variable independently by different ANN systems. In the optimi-
zation study for pharmaceuticals, model formulations are usu-
ally prepared according to statistical experimental designs in
order to reduce the number of experiments. Hence, the number
of data pairs available for ANN training is limited to low levels.
This may often lead to the underdetermined approximation in
the general ANN structure composed of plural units in the
input, hidden, and output layers. On the other hand, the parti-
tioned ANN is much easier to avoid the underdetermined
approximation because Ny = 1 can be adopted in equations
(3) and (4).
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SINGLE-OBJECTIVE OPTIMIZATION

b
In general, the optimization problems of pharmaceutical
formulations can be viewed in terms of minimization (or max-
imization) of the objective function, F (X), under the following
inequality and/or equality constraints:

GX) =0 i=123,... 5)
HX) =0 j=123,... (6)

where G;(X) is the inequality constraint and H(X ) is the equality
constraint. In the case of a fully-trained ANN, F (X)) corresponds
to the predicted value of response variable adopted as the unit
in the output layer and X is a set of causal factors used as the
units in the input layer. As it is difficult to solve the constrained
optimization problem described above without any mathemati-
cal modifications, the constrained optimization problem is trans-
formed to one that is unconstrained by adding a penalty function
as follows:

T(X,r) = FX) + r ' 2O(GX)} + r 7' DHX)P? (D)
when G(X) < 0,®P, = 1, when G{(X)=0,P, =0

where T (X, r) is the transformed unconstrained objective func-
tion, r is a perturbation parameter (r > 0) of T(X, r) and ¥,
is a step function by which the objective function, F(X), is
penalized. The second and third terms in equation (7) act as
penalty functions because these values increase abruptly when
the values of G;(X) are negative or the Hj(X) values deviate
from zero. The meaning of the perturbation parameter, r, and
the means of obtaining a global optimum solution are described
fuily in a previous paper (5). The optimum solution is obtained
as the point, X(r), which gives the minimum value of T(X, r)
when the value of r is sufficiently close to zero.

MULTI-OBJECTIVE OPTIMIZATION

When the optimization problem includes several objec-
tives, response variables should be incorporated into a single
function in order to consider all responses simultaneously. Der-
ringer and Suich (32) introduced general transformations based
on the concept of desirability associated with a given response
function. This transformation, a desirability function method,
requires minimum and maximum acceptable value for every
response. The individual response can be normalized to the
desirability functions, d; 5 3. . ,, which have values inside the
interval [0, 1] by using the distance between minimum and
maximum acceptable values. The normalized functions are then
combined into a multi-objective function, Dy, by means of
the geometric mean of predicted values of each function:

Digay = (d) X dy X d3 X - X d)i" )

The desirability function method has been widely applied to
the development of pharmaceutical products (33-35) and the
method has been useful for solving practical optimization prob-
lems. However, one of the basic shortcomings of this approach
is the subjectivity in the selection of the minimum and maximum
acceptable values for each response. Namely, improper values
of minima and/or maxima may lead to inaccurate solutions for
the optimum formulation. In order to avoid the problem of
subjectivity in application of the desirability function method,
we can employ another approach based on the generalized

3

Table I. Experimental Design and Model Formulae of Ketoprofen
Hydrogels Containing Various Amounts of Ethanol (X,) and MET (X;)

Formulation X, Ethano! (%) X, MET (%)
1 J2 50.0 0 1.50
2 -2 20.0 0 1.50
3 0 35.0 2 3.00
4 0 35.0 -2 0
5 1 45.6 1 2.56
6 1 45.6 -1 0.44
7 ~1 244 1 2.56
8 -1 24.4 -1 0.44
9 0 35.0 0 1.50

10 0 35.0 0 1.50
1 0 35.0 0 1.50
12 0 35.0 0 1.50

Note: The amounts of ketoprofen, carboxyvinyl polymer and triethanol-
amine were fixed at 0.30 g, 0.15 g and 0.20 g, respectively. The total
amount of each hydrogel was adjusted to 10.0 g by the addition of water.

distance between the predicted value of each response and the
optimum one that was obtained individually (7,36):

S5(X) = Q, [{FD(X) — FO(X)}SD )" 9)

where S (X) is the distance function generalized by the standard
deviation, SDy, of the observed values for each response vari-
able, FD(X) is the optimum value of each response variable
optimized individually over the experimental region and FO(X)
is the estimated value of all the responses given in the same
set of causal factors, X. Substituting F(X) in equation (7) with
S(X) in equation (9), the transformed function, 7(X, r), in the
case of multi-objectives can be given as follows:

T(X,r) = (O, [{FD(X) — FO(X)}/SD, )"
+ r U YDGXOP + r T Y {H XY (10)

when G(X) < 0, &, = 1; when G(X) = 0, , = 0.

The simultaneous optimum solution is estimated as the
point, X(r), which gives minimum value of 7(X,r) when the
value of r is sufficiently close to zero.

Table II. Experimental Values of Response Variables

Formulation R, (mg/h) ty (h) TIS
1 1.45 0.900 17
2 0.468 0.626 4
3 1.84 0.190 16
4 0.00499 1.08 0
5 1.36 0.854 16
6 0.422 0.931 14
7 1.56 0.235 11
8 0.273 0.956 1
9 0.918 0.904 12

10 1.06 0.954 i3
11 1.37 0.913 17
12 1.08 0.929 17
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Fig. 2. Response surfaces of R, 1, and TIS predicted by ANN as a
function of the amounts of ethanol and MET. a, R; b, 1; ¢, TIS.

A NUMERICAL EXAMPLE

A transdermal therapeutic system requires drugs to pene-
trate the stratum corneum into the systemic circulation in suffi-
cient concentrations for the desired therapeutic effect. To
achieve this, an absorption enhancer is usually needed. Recently,
Negishi et al. (37) synthesized O-alkylmenthol and O-acylmen-
thol derivatives and investigated their ability to enhance percu-
taneous absorption of ketoprofen from alcoholic hydrogels in
rats in vivo. Among these compounds, O-ethylmenthol (MET)
was the most promising compound, with the greatest promoting
action and relatively low skin irritancy (37,38). We therefore
applied the optimization technique described above to the
design of a formulation for a ketoprofen hydrogel containing
MET as an absorption enhancer (12).

5
Ethanm (%) 50

Fig. 3. Response surfaces of Ry, #;_ and TIS predicted by second-order
polynomial equation as a function of the amounts of ethanol and MET.
a, Ry, b, 1; ¢, TIS.

The amounts of ethanol (X,) and MET (X;) in the hydrogels
were selected as causal factors. A central composite spherical
design with four center point replications was used for preparing
the model formulations (Table I). The concentrations of ketopro-
fen, carboxyvinyl polymer and triethanolamine in the hydrogels
were fixed at 3.0, 1.5 and 2.0%, respectively. An appropriate
amount of water was added to adjust the total weight of the
hydrogels. Pharmacokinetic parameters, the apparent penetra-
tion rate (R), and the lag time (1, ), of ketoprofen percutaneously
absorbed from model formulations were determined in rats as
prime response variables. The skin damage evoked by each
formulation was microscopically judged and graded as the total
irritation score (71S) for skin safety factors (7). These response
variables are summarized in Table II.

A set of causal factors and response variables was used
as tutorial data for the partitioned ANN (12,31). According to
equation (3), Npiqaen = 2 Was employed as the number of units in
the hidden layer. Degree of overdetermination in this partitioned
ANN structure (Nsample = 12» Ninput = 2’ Nhidden = 2’ Noulpul =
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Table III. Predicted and Experimental Response Variables for the
Optimal Formuia

Response Predicted Experimental®
R, (mg/h) 1.45 1.21 = 0.19
1. (h) 0.264 0.713 = 0.106
TIS 9.42 108 = 1.0

2 The mean * S.D. of 4 determinations.

1) was estimated to be 33%. The extended Kalman filter algorithm
was applied for training ANN (24). Figures 2 and 3 show the
three-dimensional diagrams of each response variable as a function
of X, (amounts of ethanol) and X, (amounts of MET). Nonlinear
relationships between the causal factors and the response variables
were well represented with response surface predicted by ANN
(Fig. 2). On the other hand, the second-order polynomial equation
exhibited relatively plain surfaces for all responses (Fig. 3). Further,
polynomial equation analysis predicted negative values in the
boundary region of the experimental limits, and were outside of
physical reality (Fig. 3). Generally, the quantitative relationships
between causal factors and response variables in vivo are thought
to be complex and nonlinear. ANN seems to be more useful
than polynomial equations in cases where approximations of such
relationships are required.

Optimization of a ketoprofen hydrogel was performed
according to the generalized distance function defined in equa-
tion (10) under the restriction of the experimental region
(2 = X? + X%; in coded form). The optimal values of individ-
ual response variables, FD, (X), were calculated before simulta-
neous optimization was carried out; i.e., the individual
maximum R, the minimum ¢ and the minimum 7IS values,
respectively. ANN training and the estimation of simultaneous
optima were repeated several times and the results were fairly
stable. The simultaneous optimal solution was estimated at 23%
as ethanol and 2.2% as MET. The predicted and the experimen-
tal response variables for the optimal formulation are given in
Table III. The observed results of R, and TIS coincided well
with the predictions although the resuit of f did not. The
difference between the predicted and the experimental £ value
was about 30 min. In order to predict #, more precisely, other
experiments such as an in vitro permeation study are required.
However, R, and TIS, which are very significant for effective-
ness and safety, were satisfactorily predicted.

In conclusion, the multi-objective simultaneous optimiza-
tion technique incorporating ANN is useful for optimizing phar-
maceutical formulae when predictions of pharmaceutical
responses based on the second-order polynomial equations are
limited to low levels.
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